Paradigms and paradox in the ethylene signaling pathway and interaction network.
نویسندگان
چکیده
Phytohormone ethylene plays pivotal roles in plant response to developmental and environmental signals. During the past few years, the emerging evidence has led us to a new understanding of the signaling mechanisms and regulatory networks of the ethylene action. In this review, we focus on the major advances made in the past three years, particularly the findings leading to new paradigms and the observations under debate. With the recent demonstration of the regulation of the protein stability of numerous key signaling components including EIN3, EIL1, EIN2, ETR2, EBF1/EBF2, and ETP1/ETP2, we highlight proteasome-dependent protein degradation as an essential regulatory mechanism that is widely adopted in the ethylene signaling pathway. We also discuss the implication of the negative feedback mechanism in the ethylene signaling pathway in light of ethylene-induced ETR2 and EBF2 gene expression. Meanwhile, we summarize the controversy on the involvement of MKK9-MPK3/6 cascade in the ethylene signaling versus biosynthesis pathway, and discuss the possible role of this MAPK module in the ethylene action. Finally, we describe the complex interactions between ethylene and other signaling pathways including auxin, light, and plant innate immunity, and propose that EIN3/EIL1 act as a convergence point in the ethylene-initiated signaling network.
منابع مشابه
Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملInteraction of viral oncogenic proteins with the Wnt signaling pathway
It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...
متن کاملThe Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملThe Jak-Stat Signaling Pathway of Interferons System: Snapshots
Interferons (IFNs) are a family of small regulatory glycoproteins that play a central role in the defense against viral infections. Although IFNs have been initially discovered as antiviral factors, today they are known as an integral part of the cytokine network that affect a wide range of biological processes. IFNs exert their pleiotropic effects through their multisubunit cell surface recept...
متن کاملBacillus thuringiensis - Mediated Priming Induces Jasmonate/Ethylene and Salicylic Acid-Dependent Defense Pathways Genes in Tomato Plants
Bacillus thuringiensis Berliner as a biological control agent can play a crucial role in the integrated management of a wide range of plant pests and diseases. B. thuringiensis is expected to elicit plant defensive response through plant recognition of microbe-associated molecular patterns (MAMPs), however, there is little information on the molecular base of induced systemic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular plant
دوره 4 4 شماره
صفحات -
تاریخ انتشار 2011